If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-18x-7=0
a = 6; b = -18; c = -7;
Δ = b2-4ac
Δ = -182-4·6·(-7)
Δ = 492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{492}=\sqrt{4*123}=\sqrt{4}*\sqrt{123}=2\sqrt{123}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{123}}{2*6}=\frac{18-2\sqrt{123}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{123}}{2*6}=\frac{18+2\sqrt{123}}{12} $
| 0.5+0.75=83.3x+16.6x+0.75 | | -12x-332-3x=20x+68-10x | | 4x-2(x-3)=3(x-4) | | 5/(2x)+4/(3x)=7 | | -5x+25=5(5-x) | | 0.735+2.4w=12.9w | | 2.6x=88.3 | | X2+x=5 | | (2^2x)*(2^x+1)=(2^5x)/(2^9) | | 2(4n+5)-7=-1 | | 0.5x+0.75=83.3x+0.75 | | (4+m)÷3=5/6 | | 21x+1=21x | | x/2-3=5/6 | | Y=5(x+7)-1 | | 4x(x^2-9)=4x | | -4(x+2)-15=10+3 | | 10x-3=10x+3 | | 5.8+3.6(x)=x+94.1 | | 180-(3x+12)=x | | 2^2x.2^x+1=(2^5x)/(2^9) | | 2(2×-3)=5x | | -19y=38 | | 2(3x-5=20 | | 5^x-4=625 | | x-x(1/2+1/10+1/20)=35000 | | 9x=808 | | 4x-12=6x+16 | | 1-(3x-8)=18 | | 2^2x*2^x+1=(2^5x)/(2^9) | | 2x*6=11x-1/4 | | 2c+11=9-3c |